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Supplementary material 

S.1 Imaging setup 

The beam after the galvanometric mirrors is focused in a single diffraction-limited spot on the 
sample plane, the sample is excited and the emitted light is collected in one or more Photon 
Multiplier Tubes (PMTs) (H9305-04, Hamamatsu, Hizuoka, Japan), depending on our choice 
of reflective in the turret box and recorded using a custom LabView module. Moving the 
galvanometric mirrors translates the position of the spot on the sample plane in x and y axes. 
Thus, with a synchronized movement of the mirrors, an entire region of the sample is scanned 
and we acquire an image of the sample with a field of view depending on the voltage 
amplitude supplied to the galvanometric mirrors. 

Light reaching the PMTs is filtered by a combination of a short-pass filter at 680 nm 
(FF01-680/SP, Semrock) and a band-pass filter suitable for each individual signal. For the 
forwards detection, which we use for the SHG signal, we installed a narrow 514/3 filter 
(FF01-514/3, Semrock). For the backwards detection, which we use to collect the signals 
originated from the various fluorescent dyes, we have 3D-printed an adaptor-base which 
allows for separation and detection of the individual MPEF signals, see figure (4). In its 
entrance, a 680SP filter blocks the source light and we use a long-pass dichroic mirror (509-
FDi01, Semrock) placed at 45°, to split the incoming beam into two perpendicular parts. The 
reflected part (smaller wavelengths) is filtered by a 458/64 band-pass filter (FF1-458/64, 
Semrock) and the transmitted by a 527/20 band-pass filter (FF01-527/20, Semrock), to match 
the emissions of the fluorescent dyes used, Hoechst and Calcein, respectively. 

Fig. S1 shows an overlap of the absorption (left) /emission (right) spectra of the 
fluorescent dyes and collagen together with vertical lines for the dichroic and the various 
filters used, to visualize how the combination of the filters described in methods is suitable 
for the isolation of each signal. Fluorescence data for this plot were acquired from 
http://thermofisher.com/. 
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